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Abstract
Using reverse non-equilibrium molecular dynamics simulations, we report
the calculation of the shear viscosity and the tracer diffusion coefficient of
a binary Lennard-Jones mixture that is known as a model glass-former. Several
remarkable temperatures are well reproduced in our calculations, i.e. TS (the
onset of slow dynamics), Tc (the critical temperature predicted by the mode-
coupling theory) and TK (the Kauzmann temperature). A breakdown of the
Stokes–Einstein relation is found at temperature TS. We propose that, at
low temperatures below TS, the size of single-particle positional fluctuations
between particle-hopping events corresponds to the length measured by the
Stokes–Einstein relation, which is equated to the hydrodynamic radius of
particles at high temperatures.

1. Introduction

The elusive nature of glassy systems relates to the sharp rise in the transport coefficients
(viscosity or relaxation times) in a narrow temperature range above the calorimetric transition
temperature, Tg. Despite great interest in glassy systems over the past 40 years, as revealed by
the development of several models and theories [1–5], a complete understanding of the glassy
state and glass formation has not yet emerged. Some of the most recent investigations focus
on the picosecond–nanosecond timescale, where it is suspected that the onset of features of the
glass transition phenomena occur. Some paradigms and precise theories have been developed
especially to explain the behaviour of supercooled liquids [5] in this domain and from the point
of view of the potential energy landscape. Dynamic processes could be described in this fast
regime over a temperature range Tc < T < TS that involves two characteristic temperatures:

(i) The critical temperature, Tc, predicted by the mode-coupling theory (MCT) [6, 7]. Tc

corresponds to an ergodic-to-nonergodic transition in the ideal version of this theory.
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It is now commonly considered to be a crossover temperature to a ‘landscape-dominated’
regime in which diffusion processes can be described in terms of thermally activated
jumps.

(ii) A second remarkable temperature, denoted TS (although TA or Tx are also seen), whose
nature is still unclear at present. TS is detected above Tc, where non-exponential relaxation
and non-Arrhenius behaviour are first observed. This marks the crossover from a normal
liquid to slow dynamic behaviour. Both temperatures Tc and TS have been identified in
liquid glass-formers from computer simulations and experiments [8–10], and have also
been encountered in many molecular systems [11], in polymers [12] and more recently in
protein folding [13].

Diffusion coefficients or shear viscosity are useful parameters for following the evolution
of the transport properties of glass-formers from high temperatures (picoseconds–nanoseconds,
10−2 Poise) to low temperatures close to Tg (seconds, 1012 Poise). Several experimental
studies [14–21] have determined the diffusion coefficients and the shear viscosity of systems
that have the ability to form a glass, and these works have pointed out the deviation from the
Stokes–Einstein relation in the [Tc, TS] crossover temperature range, below a temperature of
about 1.2 times the glass transition temperature. This phenomenon is still not understood and
some hypotheses have been suggested, such as the cage effect of particles or the existence of
dynamic heterogeneities [20–22].

In this work we have performed molecular dynamics simulations of a binary Lennard-
Jones mixture in order to clarify the mechanisms responsible for the breakdown of the
Stokes–Einstein relation. We have calculated the translational diffusion coefficient and the
shear viscosity using a recent technique called reverse non-equilibrium molecular dynamics
(RNEMD) [23, 24] which provides faster convergence than the usual numerical methods [25]:
i.e. shear flow (non-equilibrium MD) or fluctuations of the stress tensor (equilibrium MD).
This RNEMD method is based on the phenomenological relation:

Jz(px) = −η

(
∂vx

∂z

)
, (1)

where ( ∂vx
∂z ) is the shear, Jz(px) is the transverse momentum flux, and η is the shear viscosity.

This method differs from the usual techniques because Jz(px) is imposed and the shear is
measured. In the z direction, the simulation box is divided into Nslab slabs. Two slabs, spaced
by half the simulation box, move oppositely in the x direction to mimic the shear. This motion
is achieved by suitably selecting two particles (one particle in each of these two slabs) and
exchanging x components of their velocities. This exchange corresponds to an unphysical
momentum transfer. As momentum is conserved, the system responds with a physical flux
in the opposite direction. The physical flux leads to a velocity profile. After the two fluxes
reach the same magnitude and the system converges towards a steady state, we can calculate
the shear viscosity. For details of the RNEMD method, which can be used without an external
thermostat, see [24]. This method has also been applied to the calculation of the thermal
conductivity [26] and the thermal diffusion coefficient [27, 28] (the Ludwig–Soret effect).

2. Computational details

All simulations were performed with the molecular dynamics package YASP [29], in which the
RNEMD method was implemented [24]. We use a binary Lennard-Jones system composed of
1500 particles (1200 of species 1 and 300 of species 2), which has been studied extensively as a
model glass-former [30–32]. The particles interact via non-additive Lennard-Jones potentials
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Figure 1. Mean square displacements (MSDs) in the x (solid line), y (dashed line) and z (dotted
line) directions of species 1 versus time from a non-equilibrium simulation at T = 1.66 with an
exchange period of 300 time steps.

Table 1. The parameters of the Lennard-Jones potentials that describe the three types of interactions
in the binary mixture.

Interaction 1–1 2–2 1–2

ε 1.0 0.50 1.5
σ 1.0 0.88 0.8

with the parameters collected in table 1, and they are not charged. We use the Lennard-Jones
reduced units [33] with σ1, ε1 and m1 as the reference length, energy and mass. A cut-
off of 2.9369 is applied. In previous work, Lennard-Jones potentials have been truncated at
rαβ = 2.5σαβ (with α, β = 1, 2) and shifted for more efficient molecular dynamics simulations.
It can be shown that these truncation details have only a minor influence on the dynamics and
the structure of the system. The neighbour list cut-off is 3.23055, and it is updated every
15 time steps. The time step is 2.3218 × 10−3. The simulations are performed in the NV T
(constant number of particles, constant volume and constant temperature) ensemble using a
Berendsen thermostat with a coupling time of 0.23218. The temperature ranges from 0.49887
to 8.3145 and we have performed from 2 × 106 to 8 × 106 time steps, depending on the
temperature, in order to get a sufficiently long steady state. Below T = 0.49887, the shear
viscosity becomes very large (η ≈ 104 at T ≈ 0.443) and the steady state cannot be reached in
a reasonable computational time. Non-equilibrium simulations in the NV E (constant number
of particles, constant volume and constant energy) ensemble as well as NV T and NV E
equilibrium simulations have been performed at different temperatures to check the consistency
of the diffusion coefficient and of the shear viscosity. The simulation box is orthorhombic and
of size L × L ×3L, where L = 7.469 is chosen to yield a density ρ of 1.2. The simulation box
is divided into 20 slabs in the z direction, and the period between velocity (vx) exchanges is
300 time steps, so the system remains in the linear regime for all temperatures investigated. To
get good statistics for the velocity gradient and for the momentum flux, the mean flow velocity
within each slab, 〈vx(z)〉, and the exchanged momentum are output every 10 time steps. The
velocity gradient ( ∂vx

∂z ) is obtained by a linear least-squares fit to the velocity profile (excluding
the exchange slab).
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Figure 2. The diffusion coefficient of species 1 (empty circles) and 2 (filled squares), and the
inverse shear viscosity (filled diamonds) as a function of the temperature T − Tc, where Tc is
the critical temperature predicted by the MCT and is fixed at Tc = 0.435, according to previous
calculations [35]. The lines are power laws of temperature, with exponents of 1.9 (dotted line)
and 1.7 (dot–dashed line) for the diffusion coefficients and 2.2 (solid line) for the inverse shear
viscosity.

Figure 1 shows the mean square displacements (MSDs) of the x , y and z components
obtained from non-equilibrium simulations at T = 1.66 with an exchange period of 300
time steps. In this figure, the MSD of the x component is the raw MSD from which a
quadratic correction term has been subtracted, which accounts for the part of the displacement
in x caused by shearing. This is V 2

x,num t2, where V 2
x,num = (1/Nslab)(

∑Nslab
i=1 〈vx,i 〉2). The

quantity 〈vx,i 〉 is an average of the x components of the velocities of all particles within slab i
among the Nslab slabs and over the time of the simulation once steady state has been reached.
Theoretically, the correction could also be obtained from the average velocity in the exchange
slab V 2

x,theor = (2/3L)
∫ 3L/2

0 〈vx(z)〉2 dz = 1
3 〈vx,1〉2 with 〈vx(z)〉 = 〈vx,1〉 − (4〈vx,1〉/3L)z.

The notations vx,1 and vx(z) refer to the mean velocity of slab 1 (the exchange slab) and the
mean velocity at the z coordinate, respectively, due to the shear. The symbol 〈· · ·〉 represents
an average of the simulation over time after steady state has been reached. V 2

x,num and V 2
x,theor

are very close; the small difference can be explained by the numerical errors in the velocity
profile that make it not rigorously linear. In figure 1, the MSD curves are almost superposed
with a slope of 1. This means that the diffusion coefficient in the x , y and z directions are equal,
within the error bars. The system is isotropic in diffusion, even though the three directions are
not equivalent symmetrically. We have also checked the behaviour of the MSDs in the x , y
and z directions for two other exchange periods (100 and 600 time steps) and we have found
the same diffusion coefficients. Moreover, we have obtained the same diffusion coefficients,
within error bars, by using equilibrium simulations. Thus we conclude that the shear does
not affect the single-particle diffusion of the system significantly. The diffusion dynamics are
found to be in good agreement with previous studies [34, 35] under equilibrium conditions.

3. Results and discussion

3.1. Determination of outstanding temperatures

Figure 2 shows the diffusion coefficients of both species and the inverse shear viscosity as a
function of the temperature T − Tc, where Tc = 0.435 is the critical temperature predicted
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Figure 3. The diffusion coefficient of species 1 (open circles) and 2 (filled squares) and the inverse
shear viscosity (filled diamonds) as a function of inverse temperature. The curves for the diffusion
coefficients (dotted and dot–dashed curves for species 1 and 2, respectively) correspond to least-
squares fits with a modified VFT function (see equation (3)). For the shear viscosity, the curves
correspond to VFT functions (see equation (2)), where the limiting temperature T0 is a parameter
(dot–dot–dashed curve) or is fixed to the Kauzmann temperature TK (solid curve). The inset shows
the inverse shear viscosity as a function of inverse temperature and its corresponding Arrhenius fit
as a solid curve.

by MCT and previously determined in [35]. The diffusion coefficients exhibit a power-law
dependence (T − Tc)

γ in a small temperature range above Tc, as predicted by MCT. The
exponents—γ � 1.9 and 1.7 for species 1 and 2, respectively—are found to be in good
agreement with previous MD simulations [34, 35]. Above T = TS � 1, the evolution of the
diffusion coefficients clearly deviates from the MCT behaviour. It should be noted that Sastry
et al [9] have associated this change with the onset of slow dynamics, where the system is
‘landscape-influenced’. Figure 2 also demonstrates that the shear viscosity follows a power
law with an exponent of γ � −2.2 in the same temperature range as that of the diffusion
coefficients. This exponent is found to be in fair agreement with the values of γ � −2.6 and
−2.45 obtained by Kob and Andersen [35] and Berthier and Barrat [36], respectively. The
origin of the difference could be due to the better power-law fits for Kob and Andersen [35]
and Berthier and Barrat [36], as they investigated lower temperatures closer to Tc.

To identify the different dynamic regimes, the diffusion coefficients of both species and
the shear viscosity are displayed in an Arrhenius plot in figure 3. At high temperatures, the
shear viscosity follows an Arrhenius law with an activation energy of Tact = 1.31, as shown in
the inset of figure 3. At low temperatures (T < TS ≈ 1), the evolution of the shear viscosity
deviates from this Arrhenius behaviour. To fit the numerical values of the shear viscosity over
the whole temperature range that was investigated, we have used a Vogel–Fulcher–Tammann
(VFT) expression:

η = η∞ exp

(
AT0

T − T0

)
. (2)

This function characterizes the increase of the shear viscosity as the temperature decreases
towards a limit that is denoted by T0. The parameter A often refers to the fragility of the system
and η∞ is the shear viscosity of the liquid at infinite temperature. The product AT0 is analogous
to the activation energy in the Arrhenius law at high temperatures. For the diffusion coefficients,
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Table 2. Parameters of the least mean square fits, using a modified VFT function (see equation (3))
for the diffusion coefficients and a VFT function (see equation (2)) for the shear viscosity.

Diffusion coefficients

Parameter ξ A T0

Species 1 31.4 3.30 0.292
Species 2 23.5 2.80 0.295

Shear viscosity

Parameter η∞ A T0

Fit 1 2.41 4.49 0.293
Fit 2 2.59 4.30 TK = 0.2976 (fixed)

a VFT function—similar to the one used for the shear viscosity—fits the data well. However,
we have used a modified VFT function to fit the numerical values over the largest possible
temperature range. This modified VFT function is

D = T

ξ
exp

( −AT0

T − T0

)
, (3)

where ξ is a friction parameter.
The fitted parameters are summarized in table 2. Clearly, all data can be described well

by the modified VFT law for the diffusion coefficient of both species and a VFT law for the
shear viscosity. Reasonable reliability is expected in this fitting process, since the temperature
T0 � 0.294 is almost the same for both transport coefficients. Moreover, T0 � TK emerges
from our calculations, where TK = 0.2976 is the Kauzmann temperature that was determined
in previous MD simulations for the same system [5, 37]. Therefore, T0 can be considered to
be a good estimation of the Kauzmann temperature in our calculations, even if it is known
that the VFT fits do not work properly at low temperatures. The correct way of determining
TK should be the calculation of the configurational entropy, as shown in [5, 37] and recently
proposed by Coluzzi et al [38, 39].

3.2. Breakdown of the Stokes–Einstein relation

Two important dynamic quantities—the diffusion coefficient and the shear viscosity—are
accessible in our simulations. Consequently, it is possible to check the validity and the
breakdown of the Stokes–Einstein relation as temperature changes. The Stokes–Einstein
relation is given by

d = kBT

3π Dη
= constant (4)

for stick boundary conditions. Figure 4 shows the evolution of the quantity d = kB T
3π Dη

as a function of temperature. Two curves have been plotted that correspond to d1 and d2

obtained from the diffusion coefficient of species 1 and 2, respectively. According to the
Stokes–Einstein approximation, the constant d is a length that is defined as the hydrodynamic
diameter of the particles. For the case of Lennard-Jones particles, the hydrodynamic diameter
corresponds to the diameter of the particles defined by σ . Indeed, at high temperatures (for
T > TS), d1 = 1.02 and d2 = 0.85 are found, which are in good agreement with the diameters
σ1 = 1 and σ2 = 0.88 for species 1 and 2, respectively (see figure 4). However, the Stokes–
Einstein relation does not hold below TS, since the apparent length d decreases for both species.



The breakdown of the Stokes–Einstein relation in supercooled binary liquids 5403

0 2 4 6 8

T

0.2

0.6

1.0

d

Species 1
Species 2

0.5 1.0 1.5 2.0
T

0.2

0.6

1.0

d

Figure 4. The length d, determined from the Stokes–Einstein relation (see equation (4)) as a
function of temperature. Open circles and filled squares are for species 1 and 2, respectively. At
high temperatures the length is constant and corresponds to the hydrodynamic diameter of particles.
The inset shows length d in the temperature range [0.5–2].

For example, at T = 0.54 we find d1 = σ1/3.0 and d2 = σ2/5.6. As the lengths d measured
by the Stokes–Einstein relation decrease as temperature decreases, d cannot be associated with
a domain size that is expected to grow, lowering the temperature. It should be noted that this
behaviour has already been observed in highly viscous silica melt by Horbach and Kob [40]
using the appropriate Green–Kubo formula and also by Barrat et al [41] for the same model
at different pressures and by Yamamoto and Onuki [42] for a binary hard sphere mixture.

Several works have proved that, in the temperature range [Tc, TS], the continuous diffusion
process is replaced by a single-particle hopping process [8, 43–45]. These investigations have
shown in particular that particles are confined on sites where they oscillate within a small
space for a long time and then hop to another place where they are again localized. This jump
corresponds approximately to a particle exchange with near neighbours separated by about σ .
This single-particle hopping process has been correlated to the shape of the self-part of the
van Hove function [8, 43, 46] and to its non-Gaussian nature [44, 45]. This suggests the
existence of clusters of mobile particles. These clusters or groups of particles move faster than
the majority of the particles in the system and are therefore called dynamic heterogeneities. In
the inset of figure 5 we have plotted the trajectory of a single particle projected on the (y, z)
plane at T = 0.54. The hopping process can clearly be seen: the trajectory of the particle is
localized at three different sites that are highlighted by circles and separated by jumps. The
size of the jumps is about σ and the radius of the circles is about σ

3 .
This single-particle hopping process is also revealed in figure 6 by the existence of a

subdiffusive regime, i.e. a plateau-like domain in the MSD curves. At low temperatures in the
plateau regime the MSD curves can be fitted with the von Schweidler law, which depends on an
exponent b in relation to the exponent γ , as predicted in MCT and used in figure 2. We found
b ≈ 0.45, which is in good agreement with the previous estimations of 0.48–0.52 according to
Kob and Andersen [47, 48]. The plateau regime is defined between two inflexion points: the
first one marks the end of the ballistic regime and the second indicates the start of the diffusive
regime. The time dependence of the diffusive regime has been fitted by using a linear law t ,
whereas a power law tα (α < 1)—inspired by the von Schweidler law—has been used for
the subdiffusive regime. A characteristic length, λ, can be derived from the intersection of
subdiffusive and diffusive regimes, identified as point A in figure 6. The length λ corresponds
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as the ordinate of point A. This point corresponds to the intersection of two fitted lines based on the
diffusive regime at long times and on the subdiffusive regime at intermediate times of the MSD.
The fitted lines are represented by solid thin lines. This length cannot be defined for T = 1.66.

to the distance covered by a particle until the particle succeeds in escaping from the cage
formed by its neighbourhood. Therefore, λ provides a measure of the size of the confined
regions (cage) explored by the particles. This length (called ‘MSD crossover length’ in the
following) can only be determined if the plateau-like regime is clearly defined. We found
T � TS—the highest temperature for which this determination is possible. This confirms the
existence of the onset of slow dynamics, as already highlighted by the diffusion coefficient
and the shear viscosity. According to the Kob–Andersen model [35], it should be noted
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that λ does not converge to zero but to a finite value equal to rc
√

(6) ≈ 0.17, where rc is
the Lindemann localization length. Below TS, 1/λ can be considered to be a coupling term
between the particle and its neighbours. Indeed, at high temperatures (above TS) the particles
normally diffuse, because they are controlled mainly by their kinetic energy rather than their
potential energy. Nevertheless, at low temperatures (below TS) the intermolecular potential is
large compared to the kinetic energy. Thus, the dynamics of the particle are slowed down by
the cage effect. This picture is analogous to the ‘landscape-influenced’ regime proposed by
Sastry [9].

In figure 5 we have plotted the MSD crossover length λ versus the apparent hydrodynamic
diameter d from the Stokes–Einstein relation at different temperatures between T = 0.50 and
0.83. For species 1 we show that λ ≈ d holds well, which means that the Stokes–Einstein
relation is sensitive to the confined fluctuations of the particles. Then the length d extracted
from the Stokes–Einstein relation does not correspond to the hydrodynamic diameter σ in the
[0.5; 0.83] temperature range. At high temperatures the motion of the particles is governed by
the diffusion process. Then the particles move freely to the location of their nearest neighbours,
so the positional fluctuations are equal to the hydrodynamic diameter. In this case, jumps and
fluctuations become indistinguishable. Yet, at lower temperatures the spatial fluctuations and
the jumps (or the hydrodynamic diameter) become uncorrelated. As the Stokes–Einstein
relation measures the positional fluctuations and not the jumps, the length d measured by the
Stokes–Einstein relation must decrease with temperature. At this stage, this new look at the
length d measured by the Stokes–Einstein relation is not incompatible with the hydrodynamic
diameter; it is a generalization. As for species 2, λ is described well by a linear function
of d , but λ = d is not granted. One explanation could be the following. As the system is
composed of 1200 particles of species 1 and 300 particles of species 2, one particle of species 2
is more likely to be surrounded by particles of species 1. Therefore, the size of the fluctuations
of one particle of species 2 results from the interaction between species 1 and 2 rather than
between species 2 and itself. Moreover, as the strength of the potential (ε) of species 2 is only
0.5 compared with 1.0 for species 1 and 1.5 for mixed interactions, the particles of species 1
can overlap the particles of species 2 more: the particles of species 2 can be seen as spheres
that are less hard than the particles of species 1. These two observations lead to the diameter
d being too small, as measured by the Stokes–Einstein relation. Another point is that the
species 2 particles are more mobile than the species 1 particles, so there is greater uncertainty
in the fit of the plateau of species 2 and the λ of species 2 is less accurate. It should also be
mentioned that, at low temperatures approaching Tc, it is difficult to estimate accurately the
diffusion coefficients and the shear viscosity due to the very long relaxation time of the system.
Consequently, a relatively large error can be suspected for d .

4. Conclusion

In this paper, we have shown that the RNEMD is a well adapted method for investigating the
transport properties of glass-forming systems. RNEMD is a recent technique that provides
faster convergence than the usual numerical non-equilibrium or equilibrium methods. A binary
Lennard-Jones mixture has been studied that is well documented in the literature and is known
as a model glass-former. Despite the very slow dynamics occurring at low temperature, the
shear viscosity has been calculated and its temperature dependence has been analysed with
other transport coefficients as the diffusion coefficients. Using different fitting laws, we were
able to reproduce—with good precision—some outstanding temperatures: i.e. the Kauzmann
temperature TK � 0.29 [31], the critical temperature Tc � 0.435 [35], predicted by MCT; and
the crossover temperature TS � 1 [9], showing the onset of slow dynamics.
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From the shear viscosity and the diffusion coefficients of both species, we have calculated
the apparent hydrodynamic diameter d from the Stokes–Einstein relation. A temperature-
independent constant with an Arrhenius behaviour is found at high temperatures in the normal
liquid state, as expected according to hydrodynamics theory. Below TS, the Stokes–Einstein
relation breaks down, as observed in some experiments on glass-former systems. We have
shown that the motion of the particles is not described by continuous diffusion but by hoppings
between sites where particles are localized. We have correlated the length d , extracted from
the Stokes–Einstein relation, with the length λ corresponding to the size of the positional
fluctuations of particles on sites where they are localized. This interpretation of the Stokes–
Einstein relation is an extension to the original concept and could be useful in understanding the
mechanisms of the formation of the glassy state. The breakdown of the Stokes–Einstein relation
appears to be a sensitive probe of the jump process when the system starts being ‘landscape-
influenced’. As the diffusion process also involves the motion of particles over a distance
approximately equal to the hydrodynamic diameter at low temperatures, the breakdown of
the Stokes–Einstein relation means that the momentum transport described by the viscosity is
characterized by another length, which appears in this work as the size of the single-particle
positional fluctuations between particle hopping events. This suggestion will be studied in
future work.
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